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Abstract. Power-suppressed corrections coming from the end-point integration regions in the amplitude
of the process γ∗γ → ππ at large Q2 and small squared center-of-mass energy W 2 are calculated in the
QCD hard-scattering approach where the amplitudes factorize in a hard perturbatively calculable part
and a generalized distribution amplitude. The running coupling method and the technique of infrared
renormalon calculus are applied to obtain Borel resummed expressions for the two main components of
the process amplitude. Numerical estimates for these power corrections are presented. They are sizeable
when Q2 < 10 GeV2.

1 Introduction

Single meson and meson pair productions with a small
invariant mass W in virtual photon–photon collisions are
exclusive processes for which perturbative QCD (PQCD)
[1] analysis was successfully applied when the virtuality
Q2 of one photon is high. These investigations are based
on the perturbative QCD factorization theorems which
allow one to compute the amplitude of the exclusive pro-
cess as the convolution integral of the meson distribution
amplitude (DA) or the two-meson generalized distribution
amplitude (GDA) [2] and the hard-scattering amplitude of
the underlying partonic subprocess. The meson DA’s and
GDA’s φ(x, µ2

F) and φ(z, ζ, W 2, µ2
F) are non-perturbative

objects and contain the long-distance mesonic binding and
hadronization effects. The GDA’s are related by crossing
[3] to the generalized parton distributions [4,5]. The the-
oretical and experimental investigations of the processes
γ∗γ → MM open opportunities to obtain new, valuable
information on the fragmentation of quarks or gluons into
mesons [6]. These processes can be studied in eγ and e+e−
collisions and first results have been published [7].

The perturbative QCD approach and the factorization
theorems describe exclusive processes at asymptotically
large values of the squared momentum transfer Q2. But
in the present experimentally accessible energy regimes,
power-suppressed corrections may play an important role.
There are numerous sources of power corrections to the
process γ∗γ → MM . For example, power corrections arise
due to the intrinsic transverse momentum of partons re-
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tained in the corresponding subprocess hard-scattering
amplitude and GDA’s. They may be estimated along the
lines presented in [8], where such corrections were calcu-
lated for the deeply virtual electroproduction of photon
and mesons on the nucleon. A power correction to the
process γ∗γ → ππ has been estimated for the amplitude
corresponding to scattering of two photons with equal he-
licities, with the help of the light-cone sum rules method
[9]. The power-suppressed (twist-3) contribution due to
the interaction of a longitudinally polarized virtual pho-
ton with the real one was analyzed within the Wandzura–
Wilczek approximation in [10].

In the present paper we compute a class of power
corrections which originate from the end-point regions
z → 0, 1 in the integration of the PQCD factorization
expression over the parton longitudinal momentum frac-
tion z. We restrict ourselves to the two-pion final state
and to the leading twist-2 amplitudes. Generalization of
our approach to encompass other two-meson final states
is straightforward.

It has been advocated [11] that, in order to reduce the
higher-order corrections to a physical quantity and im-
prove the convergence of the corresponding perturbation
series, the renormalization scale, i.e. the argument of the
QCD coupling in a Feynman diagram should be set equal
to the virtual parton’s squared four-momentum. In exclu-
sive processes, the scale chosen this way inevitably de-
pends on the longitudinal momentum fractions carried by
the hadron constituents. In our case, the relevant scale is
given by µ2

R = Q2z or Q2z [2]. But then the PQCD factor-
ization formula diverges, since αs(Q2z) [αs(Q2z)] suffers
from an end-point z → 0 [z → 1] singularity. This prob-
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lem may be solved by freezing the argument of the QCD
coupling and performing all calculations with αs(Q2) [or
αs(Q2/2)]. In the running coupling (RC) method, one al-
lows the argument of αs to run but removes divergences
appearing in the perturbative expression with the help of
a Borel transformation and a principal value prescription.
It turns out that this procedure, used in conjunction with
the infrared (IR) renormalon technique [12,13] allows one
to obtain the Borel resummed expression for the process
amplitude and estimate power corrections arising from the
end-point integration regions. This method was used for
other processes [14–18] and successfully confronted to ex-
perimental data.

This paper is organized as follows: in Sect. 2 we present
kinematics, general expressions for the amplitude of the
process and the two-pion GDA’s. In Sect. 3 we outline the
main points of the RC method and obtain the Borel re-
summed components of the amplitude. Section 4 contains
results of our numerical calculations. Finally, we give our
conclusions in Sect. 5.

2 Amplitude of the process γ∗γ → ππ

The process

γ∗(q) + γ(q′) → π(p1) + π(p2), (1)

is schematically depicted in Fig. 1. In addition to the four-
momenta of the initial and final particles one introduces
the total and relative momenta of the pion pair P = p1 +
p2, ∆ = p2 − p1. The momenta of the involved particles
can be described in terms of two light-like vectors p, n
which obey p · n = 1. The decomposition of the four-
momenta of the initial and final states in terms of the
vectors p and n reads

q = p − Q2

2
n, q′ =

Q2 + W 2

2
n, q2 = −Q2, q′2 = 0,
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Fig. 1. Schematical representation of the factorization theo-
rem for the process γ∗γ → ππ. The solid and dashed blobs de-
note the hard-scattering subprocess γ∗γ → qq (γ∗γ → gg) and
hadronization qq → ππ (gg → ππ), respectively. The quarks
(gluons) are depicted as dashed lines. The momenta of the
initial and final particles are shown in the figure. The total
momentum of the final state is P = p1 + p2 and z is the lon-
gitudinal momentum fraction of the 2π system carried by the
quark (gluon)

p1 = ζp + ζ
W 2

2
n − k⊥

2
, p2 = ζp + ζ

W 2

2
n +

k⊥
2

,

P = p +
W 2

2
n, P 2 = W 2,

∆ = (ζ − ζ)p + (ζ − ζ)
W 2

2
n + k⊥, (2)

where the quantities

ζ =
p1 · n

P · n
, ζ = 1 − ζ =

p2 · n

P · n
,

describe the distribution of the longitudinal momentum
between two pions. The vectors p and n can also be em-
ployed to define the metric tensor in the transverse space:

(−gµν)T = −gµν + pµnν + pνnµ. (3)

In the hard photoproduction regime Q2 � W 2, Λ2 the
amplitude of the process (1) has the form

Tµν(ζ, W 2) =
i
2

(−gµν)T T0(ζ, W 2)

+
i
2

kν
⊥(P + q′)µ

Q2 T1(ζ, W 2) +
i
2

k
(µ
⊥ k

ν)
⊥

W 2 T2(ζ, W 2), (4)

where k
(µ
⊥ k

ν)
⊥ is the traceless, symmetric tensor product of

the relative transverse momentum of the pion pair

k
(µ
⊥ k

ν)
⊥ = kµ

⊥kν
⊥ − 1

2
(−gµν)T k2

⊥.

In (4) T0(ζ, W 2) is the amplitude corresponding to the
scattering of two photons with equal helicities, T1(ζ, W 2)
denotes the amplitude with Lz = ±1, whereas T2(ζ, W 2)
arises from the subprocess with opposite helicity photons.
In fact, in the collinear approximation, conservation of the
angular momentum along the collision axis leads to the he-
licity conservation h∗ − h = h1 + h2, where h∗, h are the
helicities of the virtual and real photons and h1, h2 de-
note the helicities of the produced quarks or gluons. When
photons produce a quark–antiquark pair, at the leading
twist-2 level only the subprocess with Lz = 0 contributes
to the amplitude. The subprocess with Lz = ±1 is twist-
3 and determines the contribution T1(ζ, W 2) appearing
due to the interaction of a longitudinally polarized virtual
photon with the real one [10]. In the case where photons
create a gluon pair, both the subprocesses with Lz = 0
and Lz = ±2 contribute at the twist-2 level to (4).

We now focus on the amplitudes Ti(ζ, W 2), i = 0, 2,
which do not vanish at leading twist. They can be writ-
ten as convolution integrals of hard-scattering coefficient
functions C(z, µ2

F) and two-pion GDA’s Φ(z, ζ, W 2, µ2
F),

i.e.

T0(ζ, W 2) =
∑

e2
q

∫ 1

0
dzCq(z, µ2

F)Φq(z, ζ, W 2, µ2
F)

−
∑

e2
q

∫ 1

0
dzCg(z, µ2

F)Φg(z, ζ, W 2, µ2
F) (5)
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Fig. 2. Sample Feynman diagrams
of the hard-scattering subprocesses
γ∗γ → qq (at leading order – a, at next-
to-leading order – b) and γ∗γ → gg (c)

and

T2(ζ, W 2) =
∫ 1

0
dzCT

g (z, µ2
F)ΦT

g (z, ζ, W 2, µ2
F), (6)

where µ2
F is the factorization scale at which the hard and

soft parts of the reaction are defined. Here the coefficient
function Cq(z, µ2

F) is calculated with NLO accuracy using
the subprocess γ∗γ → qq (Fig. 2a,b) with Lz = 0, whereas
the functions Cg(z, µ2

F) and CT
g (z, µ2

F) correspond to the
subprocess γ∗γ → gg (Fig. 2c) with Lz = 0 and Lz = ±2,
respectively, and contribute only at the next-to-leading
order of PQCD due to quark-box diagrams.

The amplitudes Ti(ζ, W 2) do not depend on the renor-
malization and factorization schemes and scales employed
for their calculation. But at any finite order of QCD per-
turbation theory, due to truncation of the corresponding
perturbation series, the coefficient functions depend on
both the factorization µ2

F and renormalization µ2
R scales.

An optimal choice for these scales is always required to
minimize higher-order corrections. The factorization scale
µ2

F in exclusive processes is traditionally set equal to the
hard momentum transfer Q2, and we shall follow this pre-
scription.

The functions C(z) with NLO accuracy are given by
the following expressions [19]:

Cq(z) = C0
q (z) +

αs(µ2
R)

4π
C1

q (z), (7)

Cg(z) =
αs(µ2

R)
4π

C1
g (z),

CT
g (z) =

αs(µ2
R)

4π
C1

T(z), (8)

and

C0
q (z) =

1
z

− 1
z
,

C1
q (z) = CF

[
ln2 z

zz
− ln2 z

zz
+

ln2 z

z
− ln2 z

z
+ 3

ln z

z

−3
ln z

z
+

9
z

− 9
z

]
,

C1
g (z) =

1
z2z2

[
z2 ln2 z + z2 ln2 z + 2zz ln zz

− 4z ln z − 4z ln z] ,

C1
T(z) =

2
zz

, (9)

with CF = 4/3 being the color factor.

Choosing the renormalization scale µ2
R is more subtle

and we follow the prescription [11] that it is equal to the
square of the momentum transfer carrying by a virtual
parton in each leading order Feynman diagram of the un-
derlying hard-scattering subprocess. Here, these scales are
determined by the leading order diagrams of the subpro-
cess γ∗γ → qq and are given by the virtualities of the
off-shell fermion, which are equal to Q2z or to Q2z de-
pending on the diagram. In the present paper we adopt
the symmetrized RC method, where αs(Q2z) and αs(Q2z)
are replaced by

αs(Q2z), αs(Q2z) ⇒ αs(Q2z) + αs(Q2z)
2

. (10)

The reasons which led to introduction of this version of
the RC method and further details have been presented
in [17,18].

The next component in the factorization formulas (5),
(6) is the generalized distribution amplitudes of the 2π
system. At present, little is known about these GDA’s,
but using constraints originating from crossing symmetry
and soft pion theorems, as well as the evolution equation
for GDA’s, we can model them. Further information on
their analytic form should be extracted from analysis of
experimental data and corresponding theoretical predic-
tions and/or obtained, as in the case of the usual DA’s of
mesons, via QCD non-perturbative methods.

The simplest 2π GDA’s obtained using the require-
ments described above are

Φq(z, ζ, W 2, µ2
F) = 20zz(z − z)

1
nf

Mq(µ2
F)A(ζ, W 2),

Φg(z, ζ, W 2, µ2
F) = 10z2z2Mg(µ2

F)A(ζ, W 2), (11)

where the model-dependent [20] function A(ζ, W 2) is z
and Q2 independent. Our results will not depend on the
choice of this function.

The GDA’s represented by the formula (11) depend on
the momentum fractions carried by quarks Mq(µ2

F) and
gluons Mg(µ2

F) in the pion

Mq(µ2
F) = Masy

q {1 + R(µ2
0)L(µ2

F)},

R(µ2
0) =

Mq(µ2
0) − Masy

q

Masy
q

,

with

L(µ2
F) =

[
αs(µ2

F)
αs(µ2

0)

] γ
+
1

β0

, γ+
1 =

2
3
(nf + 4CF),

Mg(µ2
F) = 1 − Mq(µ2

F), (12)
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the asymptotic values of which are determined by the ex-
pressions

Masy
q =

nf

nf + 4CF
, Masy

g =
4CF

nf + 4CF
. (13)

For the helicity-two GDA ΦT
g (z, ζ, W 2, µ2

F) we take

ΦT
g (z, ζ, W 2, µ2

F) = D(µ2
F)z2z2AT

g (ζ, W 2), (14)

with

D(µ2
F) = 30DT

g (µ2
0)

[
αs(µ2

F)
αs(µ2

0)

] γTG

β0

,

γTG = 7 +
2
3
nf . (15)

In (12) and (15) µ2
0 and DT

g (µ2
0) are the normalization

point and constant, respectively.

3 Borel resummed amplitudes

Computation of the amplitudes Ti(Q2, ζ, W 2) implies inte-
grations over z. Having inserted the explicit expressions of
the hard-scattering coefficient functions and the two-pion
GDA’s into (5) and (6) we encounter divergences, arising
from the singularities of the coupling constant αs(Q2z)
and αs(Q2z) in the limits z → 0, 1. The RC method pro-
poses a way to cure these divergences.

To this end we express the running coupling
αs(Q2z) in terms of αs(Q2) [a similar argument holds
also for αs(Q2z)]. This is achieved by applying the
renormalization-group equation to αs(Q2z) [21]. We get

αs(Q2z) � αs(Q2)
1 + ln z

t

[
1 − αs(Q2)β1

2πβ0

ln
[
1 + ln z

t

]
1 + ln z

t

]
. (16)

Here αs(Q2) is the one-loop QCD coupling constant, t =
4π/β0αs(Q2) = ln

(
Q2/Λ2

)
and β0, β1 are the QCD beta

function one- and two-loop coefficients, respectively,

β0 = 11 − 2
3
nf , β1 = 51 − 19

3
nf ,

and nf is the number of active quark flavors. Equation (16)
expresses αs(Q2z) in terms of αs(Q2) with an α2

s (Q
2) or-

der accuracy.
Inserting (16) into the amplitudes we obtain integrals,

which can be regularized and calculated using the method
described in [14]. The amplitudes Ti(Q2, ζ, W 2) are then
written as perturbative series in αs(Q2) with factorially
growing coefficients Cn ∼ (n − 1)!. Their resummation
is performed by employing the Borel integral technique
[22]. Namely, one has to determine the Borel transforms
B[Ti(Q2, ζ, W 2)](u) of the corresponding series and in or-
der to find the resummed expression for the amplitudes,
has to invert B[Ti(Q2, ζ, W 2)](u) to get

[
Ti(Q2, ζ, W 2)

]res
∼ P.V.

∫ ∞

0
du exp

[
− 4πu

β0αs(Q2)

]
B

[
Ti(Q2, ζ, W 2)

]
(u)

+
[
Ti(Q2, ζ, W 2)

]amb
(17)

The Borel transforms B
[
Ti(Q2, ζ, W 2)

]
(u) contain

poles {u0} located at the positive u axis of the Borel plane,
which are exactly the IR renormalon poles. Therefore, the
inverse Borel transformation can be computed after reg-
ularization of these pole singularities, which is achieved
through a principal value prescription. But the principal
value prescription itself generates higher twist (HT) am-
biguities (uncertainties), which in the right-hand side of
(17) are denoted by [Ti(Q2, ζ, W 2)]amb. They are deter-
mined by the residues of the Borel transforms at the IR
renormalon poles q ∈ {u0} and depend also on unknown
numerical coefficients {Nq}

[
Ti(Q2, ζ, W 2)

]amb ∼
∑

q∈{u0}
Nq

Φq
i (Q

2, ζ, W 2)
Q2q

. (18)

The ambiguity (18) can be used to estimate higher twist
corrections to the amplitudes stemming from other sources
[for example, from the 2π higher twist GDA’s].

A useful way to avoid the intermediate operations and
obtain directly the Borel resummed expressions is to intro-
duce the inverse Laplace transformations of the functions
in (16), i.e.

1
(t + x)ν

=
1

Γ (ν)

∫ ∞

0
du exp[−u(t + x)]uν−1, Reν > 0,

(19)
and

ln[t + x]
(t + x)2

=
∫ ∞

0
du exp[−u(t + x)](1 − γE − lnu)u, (20)

where Γ (ν) is the Gamma function, γE � 0.577216 is the
Euler constant and x = ln z [x = ln z in the case αs(Q2z)].
Then, the QCD coupling αs(Q2z) may be written as [16]

αs(Q2z) =
4π
β0

∫ ∞

0
due−utR(u, t)z−u, (21)

with

R(u, t) = 1 − 2β1

β2
0

u(1 − γE − ln t − lnu). (22)

The expression for the QCD running coupling (21) is ob-
tained from (16) and is suited to account for the end-
point effects. It differs from that introduced to perform
the resummation of diagrams with quark vacuum inser-
tions (“bubble chains”) into a gluon line [12,13]. In exclu-
sive processes both these sources lead to power corrections.
As noted above, in the present work we consider contri-
butions to the process amplitudes arising only from the
end-point regions.
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Using (11), (14) and (21) and performing the integra-
tion over z we get1

[T0(Q2, ζ, W 2)]res = 20A(ζ, W 2)

×
∑

e2
q

{
Mq(Q2)

3nf

[
1 +

3CF

β0

∫ ∞

0
due−utR(u, t)Q(u)

]

− Mg(Q2)
2β0

∫ ∞

0
due−utR(u, t)G(u)

}
, (23)

and

[T2(Q2, ζ, W 2)]res = 2AT
g (ζ, W 2)

D(Q2)
β0

×
∫ ∞

0
due−utR(u, t)B(2 − u, 2), (24)

with

Q(u) =
∂2

∂β2 B(2 − u, β)|1 +
d2

dβ2 B(2, β)|1−u

− ∂2

∂β2 B(1 − u, β)|2 − d2

dβ2 B(1, β)|2−u

+
∂2

∂β2 B(1 − u, β)|3 +
d2

dβ2 B(1, β)|3−u

− ∂2

∂β2 B(2 − u, β)|2 − d2

dβ2 B(2, β)|2−u

+ 3
∂

∂β
B(1 − u, β)|3 + 3

d
dβ

B(1, β)|3−u

− 3
∂

∂β
B(2 − u, β)|2 − 3

d
dβ

B(2, β)|2−u

− 9B(3 − u, 1) − 9B(1 − u, 3)
+ 18B(2 − u, 2) (25)

and

G(u) =
∂2

∂β2 B(1 − u, β)|3 +
d2

dβ2 B(1, β)|3−u

+ 2
∂

∂β
B(2 − u, β)|2 + 2

d
dβ

B(2, β)|2−u

− 4
∂

∂β
B(1 − u, β)|2 − 4

d
dβ

B(1, β)|2−u, (26)

where B(x, y) is the Beta function B(x, y) =
Γ (x)Γ (y)/Γ (x + y).

In order to proceed one has to reveal the IR renormalon
poles in the resummed expressions. The analysis of the
pole structure of Q(u) and G(u) is straightforward. The
result is that the function Q(u) contains a finite number
of triple poles located at u0 = 1, 2, 3, an infinite number
of double poles at the points u0 = 2, 3, 4 . . .∞ and single
ones at the points u0 = 1, 2, 3, 4 . . .∞. For the function
G(u) we get: triple pole with location at u0 = 3, infinite
number of double (u0 = 2, 3, 4 . . .∞) and single poles
(u0 = 1, 2, 3, 4 . . .∞). The amplitude [T2(Q2, ζ, W 2)]res

1 Below, for brevity, we do not write down explicitly the
higher twist ambiguities in the resummed expressions.

possesses only single poles at u0 = 2, 3. In other words,
by employing (16) we have transformed the end-point di-
vergences in (5) and (6) into the IR renormalon pole di-
vergences in (23) and (24). One can see that the integrals
in these expressions are the inverse Borel transformations
(17), where the Borel transforms Bq(g)[T0(Q2, ζ, W 2)](u)
of the quark and gluon components of the amplitude
[T0(Q2, ζ, W 2)]res (in the quark case the NLO part) and
that of the amplitude [T2(Q2, ζ, W 2)]res up to constant
factors are defined as

Bq(g)[T0(Q2, ζ, W 2)](u) ∼ R(u, t)Q(u) [−G(u)] ,

B[T2(Q2, ζ, W 2)](u) ∼ R(u, t)B(2 − u, 2).

After removing IR renormalon divergences from (23)
and (24) by means of the principal value prescription, they
determine the resummed amplitudes [Ti(Q2, ζ, W 2)]res.
The final expressions [Ti(Q2, ζ, W 2)]res contain power-
suppressed corrections ∼ 1/Q2n, n = 1, 2, 3, . . . to the
amplitudes [16–18] and are the main results of the present
work.

Let us now check the asymptotic limit of the re-
summed amplitudes. In the asymptotic limit Q2 → ∞,
GDA’s Φq(z, ζ, W 2, Q2) and Φg(z, ζ, W 2, Q2) evolve to
their asymptotic forms obtainable from (11) by means of
the replacements Mq(Q2) → Masy

q and Mg(Q2) → Masy
g .

We need also to take into account that in this limit the
subleading term in the expansion of αs(Q2z) through
αs(Q2) should be neglected, i.e.∫ ∞

0
due−utR(u, t) →

∫ ∞

0
due−ut. (27)

Then the amplitude [T0(Q2, ζ, W 2)]res takes the following
form:

[T0(Q2, ζ, W 2)]res =
20A(ζ, W 2)
3(nf + 4CF)

×
∑

e2
q

{
1 +

3CF

β0

∫ ∞

0
due−ut [Q(u) − 2G(u)]

}
. (28)

The asymptotic limit of the integrals can be computed
using techniques, described in a detailed form in [17,18].
After some manipulations, one gets for the asymptotic
limit of the amplitude [T0(Q2, ζ, W 2)]res[

T0(Q2, ζ, W 2)
]res

→ 20A(ζ, W 2)
3(nf + 4CF)

∑
e2
q

{
1 − 87

9
CF

αs(Q2)
4π

}
. (29)

This expression coincides with the corresponding re-
sult from [19]2 and can be readily obtained within the
standard approach employing the 2π asymptotic GDA’s.
The asymptotic limit of the amplitude [T2(Q2, ζ, W 2)]res,
due to the factor D(Q2), is equal to zero.

This analysis of the asymptotic limit of the Borel re-
summed amplitudes shows the internal consistency of the
RC method itself.

2 Our definition of the function A(ζ, W 2) differs by a factor
−1/6 from that of [19].
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4 Numerical results

Let us now present numerical estimates of the power
corrections to the amplitudes. The resummed amplitude
[T0(Q2, ζ, W 2)]res, which contains both the hard perturba-
tive component and power corrections, can be rewritten
in the form

[T0(Q2, ζ, W 2)]res = TLO
0 (Q2, ζ, W 2) + TNLO

0 (Q2, ζ, W 2)

+ TPC
0 (Q2, ζ, W 2), (30)

where the first two terms in the RHS of (30) are the LO
and NLO parts of the amplitude, whereas TPC

0 (Q2, ζ, W 2)
denotes the power corrections to it. The latter is given by
the expression

TPC
0 (Q2, ζ, W 2) =

[
T0(Q2, ζ, W 2)

]res
NLO

− TNLO
0 (Q2, ζ, W 2). (31)

For our purposes it is convenient to normalize the expres-
sions (30) and (31) in terms of TLO

0 (Q2, ζ, W 2), which re-
sults in ratios independent on the function A(ζ, W 2):

R(Q2) = 1 + R1(Q2) + R2(Q2). (32)

Here

R1(Q2) =
TNLO

0 (Q2, ζ, W 2)
TLO

0 (Q2, ζ, W 2)
,

R2(Q2) =
TPC

0 (Q2, ζ, W 2)
TLO

0 (Q2, ζ, W 2)
. (33)

In our calculations we use the following values of the pa-
rameters Λ and µ0:

Λ4 = 0.2 GeV, µ2
0 = 1 GeV2. (34)

To clarify the sensitivity of the predictions to the pa-
rameter Mq(µ2

0) we shall take the two plausible values
Mq(1 GeV2) = 0.5 and Mq(1 GeV2) = 0.6. We use the
two-loop approximation for the QCD coupling αs(Q2).

The amplitude [T0(Q2, ζ, W 2)]res contains an infinite
number of IR renormalon poles. We truncate the corre-
sponding series at some nmax = 50 which is amply suffi-
cient [17,18].

In Fig. 3 we show R2(Q2) as a function of Q2. The
power corrections amount to some 50–60 per cent of the
corresponding leading order contribution at Q2 = 1 GeV2.
They are not completely negligible also at Q2 = 10 GeV2

reaching around 15% of the LO term. One observes that
in the region 1 GeV2 ≤ Q2 ≤ 4 GeV2 the function R2(Q2)
is more sensitive to the chosen value of the parameter Mq

than in the domain Q2 ∼ 10 GeV2.
In Fig. 3 the ratios R(Q2), 1 + R1(Q2) are also shown.

As is seen the power corrections significantly reduce the
amplitude T0(Q2, ζ, W 2) and this effect depends on the
2π GDA used in calculations. Thus, at Q2 = 1 GeV2 the
resummed amplitude computed using the 2π GDA with
the input parameter Mq = 0.6 is approximately twice as
large as the same amplitude found employing the GDA
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Fig. 3. The ratios R2(Q2), R(Q2) and 1+R1(Q2) as functions
of Q2. The solid (dashed) curve corresponds to the parameter
Mq(1 GeV2) = 0.6 [Mq(1 GeV2) = 0.5]

with Mq = 0.5. At the higher values of Q2 this difference
becomes more moderate, ∼ 1.1 at Q2 = 10 GeV2.

Another conclusion, which can be made after analy-
sis of Fig. 3 is that the difference between the resummed
[the ratio R(Q2)] and the standard predictions for the
amplitude [the ratio 1 + R1(Q2)] becomes smaller at
higher values of the momentum transfer Q2. In fact, at
Q2 = 1 GeV2 the resummed amplitude is equal to 0.41 of
the standard result, whereas at 10 GeV2 one gets 0.85 [for
Mq(1 GeV2) = 0.6].

For phenomenological applications it is useful to
parametrize the ratio R2(Q2) using the power-suppressed
terms ∼ 1/Q2n, n = 1, 2, 3. Our fitting procedure leads to
the following expressions:

R2(Q2) � 1
Q2

[
−1.709 +

1.881
Q2 − 0.7524

Q4

]
,

Mq(1 GeV2) = 0.5,

R2(Q2) � 1
Q2

[
−1.462 +

1.515
Q2 − 0.533

Q4

]
,

Mq(1 GeV2) = 0.6. (35)

The power corrections to the amplitude T2(Q2, ζ, W 2) are
given by the formula

TPC
2 (Q2, ζ, W 2) =

[
T2(Q2, ζ, W 2)

]res
− T2(Q2, ζ, W 2). (36)

The ratio

R3(Q2) =
TPC

2 (Q2, ζ, W 2)
T2(Q2, ζ, W 2)

is shown in Fig. 4. It turns out that in this estimate the
power corrections to the amplitude T2(Q2, ζ, W 2) are large
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Fig. 4. The ratio R3(Q2) versus Q2. The solid line corresponds
to R3(Q2) without the HT ambiguities. The broken lines are
obtained by taking into account the HT ambiguities (18). For
the dashed line: N2 = N3 = 1; for the dot-dashed line: N2 =
N3 = −1

and may still amount to a 60 per cent increase of the
amplitude at Q2 ∼ 10 GeV2. Such a large magnitude of
the end-point effects can be traced back to the fact that
T2(Q2, ζ, W 2) begins at O(αS(Q2)). At the same time, the
ratio of these power corrections to the total amplitude
of the process remains within reasonable limits. To see
this, we normalize the corrections TPC

2 in terms of the
TLO

0 ignoring the different tensor factors in (4) and setting
AT

g (ζ, W 2) = A(ζ, W 2), DT
g (1 GeV2) = 1, but keeping the

factor
∑

e2
q in definition of the function T0(Q2, ζ, W 2).

The ratio TPC
2 /TLO

0 calculated in this approximate way is
shown in Fig. 5. We find that power corrections TPC

2 may
amount to 31–38% of the TLO

0 at Q2 = 1 GeV2 and only to
6–7% of its value at Q2 = 10 GeV2. The precise estimate
of the effects generated by the helicity-two component of
the amplitude (4) requires more detailed investigation.

The HT ambiguities (18) coming from the principal
value prescription, in the process under consideration are
sizeable only for small values of the momentum transfer
1 GeV2 ≤ Q2 ≤ 2.5 GeV2 [from ±9% to ±3%]. At Q2 =
5 GeV2 they are already less than ±1% of the original
result. As an example, the relevant curves for the ratio
R3(Q2) are shown in Fig. 4.

5 Concluding remarks

In this work we have estimated the power corrections to
the amplitudes Ti(Q2, ζ, W 2) of the process γ∗γ → ππ,
originating from the end-point regions z → 0, 1. To this
end, we have employed the symmetrized RC method
combined with techniques of the IR renormalon calcu-
lus. We have obtained the Borel resummed expressions
[Ti(Q2, ζ, W 2)]res for the amplitudes and have removed IR
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Fig. 5. The ratio T PC
2 /TLO

0 versus Q2. The solid (dashed)
curve corresponds to the parameter Mq(1 GeV2) = 0.6
[Mq(1 GeV2) = 0.5]

renormalon divergences by means of a principal value pre-
scription. In the considered process the Borel transform of
the amplitude T0(Q2, ζ, W 2) contains an infinite number
of the IR renormalon poles. Since each IR renormalon pole
u0 = n in the Borel transforms Bq(g)[T0(Q2, ζ, W 2)](u),
B[T2(Q2, ζ, W 2)](u) corresponds to the power correction
∼ 1/Q2n to the amplitudes, and the expression (23),
in general, contains power corrections ∼ 1/Q2n, n =
1, 2, ...∞. In numerical computations we have truncated
the corresponding series at nmax = 50. As an important
consistency check, we have proved that the result obtained
within the symmetrized RC method in the asymptotic
limit Q2 → ∞ reproduces the standard prediction for the
amplitudes.

It is known that the principal value prescription gener-
ates higher twist uncertainties. We have shown that these
uncertainties at Q2 = 1 GeV2 do not exceed ±10% of the
original prediction and can be safely neglected in the re-
gion Q2 ≥ 5 GeV2.

Our numerical calculations have demonstrated in an
admittedly method dependent way that the power cor-
rections coming from the analysis of end-point regions
may be essential in the region of photon virtualities Q2 ∼
a few GeV2. Therefore, the phenomenological analysis of
the process γ∗γ → ππ in the presently experimentally-
accessible energy regimes should include them.
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